Skip to main content

Performance Optimization

Optimize your MCP servers for better performance and resource usage.

Overview

Optimizing your MCP servers helps reduce costs, improve response times, and provide better user experience.

Resource Optimization

Memory Usage

  • Profile your application
  • Identify memory leaks
  • Use efficient data structures
  • Implement pagination for large datasets

CPU Usage

  • Use async/await patterns
  • Avoid blocking operations
  • Optimize algorithms
  • Cache expensive computations

Code Optimization

Efficient Algorithms

  • Choose appropriate algorithms
  • Avoid unnecessary computations
  • Use built-in functions
  • Optimize data processing

Caching

Implement caching where appropriate:

  • Cache API responses
  • Cache database queries
  • Cache computed results
  • Set appropriate TTLs

Docker Optimization

Image Size

  • Use slim base images
  • Multi-stage builds
  • Remove unnecessary files
  • Leverage layer caching

Build Time

  • Optimize Dockerfile order
  • Cache dependencies
  • Use .dockerignore
  • Minimize layers

Database Optimization

If your server uses a database:

  • Use indexes appropriately
  • Optimize queries
  • Use connection pooling
  • Implement query caching

Monitoring

Monitor performance metrics:

  • Response times
  • Resource usage
  • Error rates
  • Request patterns

Use this data to identify optimization opportunities.

Best Practices

  1. Profile First: Measure before optimizing
  2. Optimize Hot Paths: Focus on frequently used code
  3. Test Changes: Verify optimizations work
  4. Monitor Impact: Track performance improvements
  5. Iterate: Continuous optimization

Next Steps